617. — I. S. GRADSHTEYN & I. M. RYZHIK, *Table of Integrals, Series, and Products*, 5th ed. (Alan Jeffrey, ed.) (translated from the Russian by Scripta Technica, Inc.), Academic Press, Boston, 1994.

Page	Formula	
xxxiii	line $l - 3,$	Section The Factorial (Gamma) Function.
		By writing $\Psi(z+1)$ instead of $\Psi(z)$ in the formula
		on line 5 of page xxxiv, this section becomes useless,
		except for the notation $\Gamma(1 + z) = z! = \Pi(z)$. In
		fact $\Psi(z)$ so defined is identical to $\psi(z)$ as defined
		in 8.36, and the letter ψ should in any case be used
	1' 0	in the remaining four equations. $\sum_{n=1}^{\infty} (n + 1) = 0$ and the set of $\frac{3}{2} = 1$
XXXV	line 9	For $(z \gg 1 \text{ and } n > 0)$ read $[\arg z < \frac{2}{2}\pi]$.
XXXV111	line $l = 5$	Add = $\frac{1}{\pi} \sqrt{\frac{2}{3}} K_{\frac{1}{3}}(\frac{2}{3}z^{\frac{1}{2}})$.
xli	line 11	For bei ber read bei $_{\nu}$ ber $_{\nu}$.
xli	line 16	For (x) read (t) .
X111	line 8	For See probability read Probability.
X111	line 9	For erfc read erf.
X111	line 13	Delete. Example $E(x, y)$
X111	line 18	For $F_{\Lambda}(\alpha; \beta_1 \text{ read } F_A(\alpha; \beta_1 \text{ .}$
X111	line $l - 1/l$	For Other nonperiodic read Non-periodic.
X111	line $l = 12$	For Other nonperiodic read Non-periodic.
xliii	line 6,7	For Bessel functions of an imaginary argument read Modified Bessel functions
xliii	line 14, 15	For Bessel functions of imaginary argument read
	,	Modified Bessel functions.
xliii	line 25	For Neumann's functions read Bessel functions of
		the second kind (Neumann functions).
xliii	line <i>l</i> – 9	For $p_{\nu}^{\mu}(x)$ read $P_{\nu}^{\mu}(x)$.
xliii	line $l-5$	For $p_n^{(\alpha,\beta)}(x)$ read $P_n^{(\alpha,\beta)}(x)$.
xliv	line $l - 9,$	Replace the section between $T_n(x)$ and $U_n(x)$ by
	$\Theta(u)$,	$\Theta_1(u), \qquad)$
	$\vartheta_{\nu}(u)$	$\vartheta_{\mu}(u,q), \vartheta_{\mu}(u \tau),$
	$\theta_{1}(y)$	$\beta_{\mu}(\mu, q) = \beta_{\mu}(\mu \tau)$ Jacobian theta functions
	$\binom{k}{k}$	8.18, 8.19
	$(\lambda - 0)$	$(\mathbf{y}_1, \dots, \mathbf{y}_{n-1}),$
	$v_0 \equiv v$	$\mathcal{B}_4; \mathcal{B}_0 \equiv \mathcal{B}_4 \qquad \mathcal{D}$
xlv		This whole page "Notations" is superficial and con-
•	0.100	fused.
3	0.132	Add $[n \to \infty]$.

13	0.243.2.	For <i>i</i> read 1 in the upper limit of the integral.
20	0.320.3.	For t read l in the limits of the integral.
27	1.2111.	For x^h read x^k .
170	2.5322.	Insert $a - sign$ before the first term on the right-
		hand side.
170	2.5331.	For $\cos(a+b)$ read $\cos(a+b)x$.
170	2.5332.	For sin dx read sin $cx dx$.
263	line 7	Insert Cauchy before principal.
334	3.1944.	For $\operatorname{Re}\nu$ read $\operatorname{Re}\mu$.
353	3.3132.	For β read B.
354	3.3182.	For $\sqrt{\pi e}$ read $\sqrt{\pi e}$.
354	3.3221.	For $u > 0$ read $u \ge 0$.
355	3.323 1.	For ~ read =; delete $[q \neq -2]$.
355	3.3232.	For $\frac{\sqrt{\pi}}{p}$ read $\frac{\sqrt{\pi}}{ p }$; delete $[p > 0]$.
357	3.351 1. – 9.	All these entries are superfluous. They can easily be
		deduced from the indefinite integrals in 2.32.
359	3.3532.	For $n > 2$ read $n \ge 2$.
359	3.353 5.	Add $n \ge 0$ in the restrictions.
359	3.354 5.	For $\frac{\pi}{a}$ read $\frac{\pi}{ a }$;
		for $[a > 0]$, p real read $[a \neq 0, p \text{ real}]$.
360	3.3553., 4.	For $Im(a^2) > 0$ read $Im(a^2) \neq 0$.
365	3.383 5.	For $\psi(q, q+1-\nu, p/a)$ read $\Psi(q, q+1-\nu; p/a)$;
		for $0(a/p)^{N+1}$ read $O((a/p)^{N+1})$.
260	2 280 2	For $ T^{1-\nu}\rangle$ read $ 1-\nu\rangle$
309	5.5072.	$\left 1 - \rho - \nu, 0, \frac{1}{2} \right = \left 1 - \rho - \nu, 0, \frac{1}{2} \right .$
369	3.389 3.	For $L_{\nu+\frac{1}{2}}$ read $\mathbf{L}_{\nu+\frac{1}{2}}$.
371	3.4116.	For β^{η} read β^{μ} .
373	3.4152.	For \mathbf{B}_{2k+2} read B_{2k+2} .
373	3.4163.	For 2^{2^n} read 2^{2n} .
375	3.423 3.	For $a < 1$ read $-1 \le a < 1$.
376	3.4234.	For $\Phi(\beta; \nu - 1; \mu) - (\mu - 1)\Phi(\beta; \nu; \mu)$ read
		$\Phi(m{eta}, u-1,\mu)-(\mu-1)\Phi(m{eta}, u,\mu).$
376	3.424 2.	For $n!$ read $-n!$; add $[a > -1, n = 1, 2,]$.
376	3.4252.	For B read B .
382	3.461	This number is missing.
385	3.4751.	This integral is incorrect. In [4, Table $92(14)$], the
		first term reads $\exp(-x^{2^n})$ instead of $\exp(-x^2)$.
		From 3.4752. on p. 386, and under the assumption
		that this integral is valid for all $n \in \mathbb{Z}$, 3.4751. can
		be written as
		$\int_{-\infty}^{\infty} (1 + 1) dr = 1$

$$\int_0^\infty \left\{ e^{-x^2} - \frac{1}{1+x^{2^n}} \right\} \frac{dx}{x} = -\frac{1}{2}C \qquad [n \in \mathbb{Z}].$$

This would also imply

$$\int_0^\infty \frac{x^{2^n-1}-x}{(1+x^2)(1+x^{2^n})}\,dx=0\qquad [n\in\mathbb{Z}]\,.$$

There is numerical evidence that the integrals in

450

$$\begin{array}{rl} 3.475, \text{ and maybe others in this section, are also valid for noninteger values of n. \\ 391 3.5184. For $2^{\mu+\nu-\rho}\beta$ read $2^{\mu+\nu-\rho-2}B$; for $2 - \frac{1}{2}\mu - \nu$ read $p + 2 - \frac{1}{2}\mu - \nu$.
391 3.5185. For $\operatorname{Re}(2+\rho)\operatorname{Re}(\mu+\nu)$ read $\operatorname{Re}(2+\rho) > \operatorname{Re}(\mu+\nu)$.
391 3.5186. For $2F_1$ read $\frac{1}{2} _2F_1$; for 2B read B.
194 Insert 9. — after the double line.
394 3.5249. For "is divergent" read $\frac{\pi^3}{4b^3}\sin\frac{a\pi}{2b}\sec^3\frac{a\pi}{2b}$ $[b>|a|].$
394 3.5249. For "is divergent" read $\frac{\pi^3}{4b^3}\sin\frac{a\pi}{2b}\sec^3\frac{a\pi}{2b}$ $[b>|a|].$
394 3.5249. – 23. Increase the numbers 9. to 23. by 1, thus read 10. to 24.
408 3.6127. Replace $\cos x$ by $\cos^{2m+1}x$; add $[n > m \ge 0]$.
410 3.614 For $a < b$ read $a^2 < b$ in third line.
415 3.63 In many of these integrals, add $[n \ge 0]$.
416 3.6312. Delete the factor 2 in the integrand.
416 3.63113. In the second line,
for $(2m-2n-3)!!$ read $(2n-2m+1)!!$;
in the third line,
for $(2m-2n+3)!!$ read $(2m-2n-3)!!$.
416 3.63115. Replace the clumsy second and third line by
 $= [1-(-1)^{m+n}]\frac{m!}{(m+n)!!} \left\{\sum_{k=0}^{\min(m,n)-1} \frac{(m+n-2k-2)!!}{(m-k)!} + s\right\}$
 $s = \left\{ \begin{array}{c} 0 & [n-m \le 0 \text{ or } \frac{1}{2}(n-m) \text{ even}], \\ (n-m-2)!! & [n-m \text{ odd}], \\ 2(n-m-2)!! & [\frac{1}{2}(n-m) \text{ odd}]. \end{array} \right.$
416 3.63117. Replace the clumsy formula on top of p. 417 by [9, No. 2.5.12.24,25.]
 $= [1+(-1)^{m+n}] \left\{ \begin{array}{c} 0 & sn! & [n < m], \\ (n \ge m] \\ (s = \frac{1}{2}\pi \text{ if } n - m \text{ even}, s = 1 \text{ if } n - m \text{ odd}.)$
417 3.63120. For n read ν (4 times).
418 3.6351. Replace the right-hand side by $\frac{1}{2}\beta(\mu)$.
419 3.6352. For $2^{p+2+n+1} \text{ read } 2^{p+2n+1}$.
422 3.6511. In the reviewer's copy this formula is mutilated. It should read $\int_0^{\frac{1}{4}} \frac{tg^{\mu}x \, dx}{1+\sin x \cos x} = \frac{1}{3} \left[\psi \left(\frac{\mu+2}{3} \right) - \psi \left(\frac{\mu+1}{3} \right) \right].$
423 3.6532. Delete the factor 2 in the integrand.$$

445 3.7222., 4. For *iab* read *iab*. 445 3.7226., 8. For *iab* read *iab*.

455 458	3.747 1. 3.761 6.	Add = $2\pi G - \frac{7}{2}\zeta(3)$ [m = 2]. For $_{1}F_{1}(\mu; \mu + 1; ia) + _{1}F_{1}(\mu; \mu + 1; -ia)$ read
	001 01	$_{1}F_{1}(\mu; \mu+1; ia) + _{1}F_{1}(\mu; \mu+1; -ia).$
461	3.7664.	Replace $\Gamma[2(\mu+\frac{1}{2})]$ by $\Gamma(2\mu+1)$.
465	3.77112.	For $s_{(\nu-1)\nu+1}$ read $s_{\nu-1,\nu+1}$.
467	3.7736.	For $0 \le m < n + \frac{1}{2}$ read $0 \le m \le n$.
477	3.8124.	Delete [divergent if $a^2 = 0$].
477	3.8125.	For $0 \neq a^2 \neq 1$ read $0 < a^2 < 1$;
		delete [divergent if $a^2 = 0$].
480	3.8162.	For $\frac{\pi}{2}$ read $\frac{\pi}{a}$.
484	3.8243.	For $\cdot \frac{\pi}{2}$ read $\frac{\pi}{a}$. The simpler formula
		$\frac{\pi}{2^{2m+1}a} \sum_{k=0}^{m} (-1)^k \binom{2m}{m-k} e^{-2ka}$
		which has been proposed in [1] is incorrect; for $m = 1$, it yields $\frac{\pi}{8a}(2-e^{-2a})$ instead of $\frac{\pi}{4a}(1-e^{-2a})$ [9, No. 2.5.6.11]
101	2 0 2 1 1	For $\sin^{2^{m}+1}x$ rood $\sin^{2m+1}x$
404 484	3.0244.	Replace the right-hand side by the simpler formula
-0-	5.024 5.	
		$\frac{\pi}{2^{2m+1}}e^{-(2m+1)a}\sum_{k=0}^m(-1)^{m+k}\binom{2m+1}{k}e^{2ka}.$
		Delete BI ((160))(15).
484	3.8246.	For 2^{2m} read $2^{2m}a$.
495	3.836 5.	Delete $I_n(b) = \frac{2}{\pi}$;
		for $n(2^{n-1}n!)^{-1}$ read $\frac{\pi}{2^{n-2}(n-1)!}$;
		$2^{n-2}(n-1)!$
		while second line as $[0 \le b < n, n \ge 1, r = (n - b)/2]$
512	3 803 4	(n-v)/2. Replace first line by 4: delete second and third
512	5.0754.	lines
513	3.8959.	Add $[n > 0]$.
514	3.89510.	Delete $[p \neq 0]$.
514	3.895 12.	For $a > 0$ read $a > 0$.
515	3.8991.	For $p^2 \overline{x}^2$ read $-p^2 x^2$.
556	4.212 5.	For $1 + \ln x$ read $a + \ln x$.
560	4.22411.	This entry is confused and should be given as fol- lows:
	\int_{0}	$\frac{\pi^2}{2}\ln(1+a\sin x)^2dx$
		$= \pi \ln(a/2) + 4\mathbf{G} + 4\sum_{k=1}^{\infty} \frac{b^k}{k} \sum_{n=1}^k \frac{(-1)^{n+1}}{2n-1} [a>0],$

b = (1-a)/(1+a).

		Note the unusual notation $\ln(1+a\sin x)^2$. It occurs
		also in other formulas and means $2\ln 1 + a\sin x $.
		Delete $BI((308))(5,6,7,8)$.
562	4.227 4.	For n even, the right-hand side is equal to
		$\frac{1}{2}\left(\frac{\pi}{2}\right)^{n+1} E_n .$
562	4.227 5.	Replace the right-hand side by $\left(\frac{\pi}{2}\right)^{2n+1} E_{2n} $.
564	4.231 5	For $[0 < a < 1]$ read $[a > 0]$
564	4.2317 - 10	By replacing the parameters in the right-hand side
		by their absolute values, the restrictions can be re-
		placed by $[ab \neq 0]$. There are more of such cases.
565	4.233 3.	For $2\pi^2$ read $7\pi^2$.
570	4.2536.	For " $\mu - a$ is not a natural number" read
		$ \arg a < \pi$.
670	4 2 5 2 7	$\sum_{n=1}^{n-2} 1 = 2 \sum_{n=1}^{2n-3} 1$
570	4.2537.	For $-\sum_{k} \overline{k} - 2 \sum_{k} \overline{k}$
		$\substack{k=1\\n-1}$
		read $-2\sum \frac{1}{1}$:
		$\sum_{k=1}^{2} 2k - 1$
		For $a > 0$ read $ \arg a < \pi$, $n = 1, 2,$
573	4.26117.	For $\psi'(\mu)$ read $\psi'(\mu)$.
575	4.267 3.	For $\frac{1}{2}(n-1)$ read $[\frac{1}{2}(n-1)]$.
589	4.2939.	Replace $-\psi(1)$ by $+C$.
603	4.3353.	Replace $-\psi''(1)$ by $+2\zeta(3)$.
603	4.337 4.	For $\frac{\beta}{\beta-x}$ read $ \frac{\beta}{\beta-x} $; delete " β cannot be a real
(0)	12561 6	positive number,".
606	4.3564 6.	Delete the text before the formula.
607	4.3584.	For $\frac{1}{\nu}$ read $\frac{1}{\mu^{\nu}}$.
612	4.376 8.	Move $[n = 1, 2,, a > 0]$ to first line; move BI((356))(2) to second line
613	4 384 2	Delete the incorrect second line
626	4.3042.	The two results given are incorrect Replace them
020		by $\frac{1}{2}(-1)^n(n-1)!(1-2^{-(n+1)})!(n+1)$
		Delete BI((287))(20)
632	4 441 1	For l read l
661	5 56	The footnote is misleading. For example
001	5.50	$\int I_1(x) dx = I_0(x)$
672	6 2 4 4 1 2	For $[si(nx)]$ read $si(nx)$
689	6 443 4	Replace 0 on the right-hand side by
007	0.113 1.	
		$\frac{2}{\pi^2} \left[\frac{1}{(2n+1)^2} (C + \ln 2\pi) + 2 \sum_{k=2}^{\infty} \frac{\ln k}{4k^2 - (2n+1)^2} \right].$
		Delete NH 203(6).
691	6.4651.	Replace 0 on the right-hand side by
		$-\frac{2}{\pi}\left[C+\ln 2\pi+2\sum_{k=1}^{\infty}\frac{\ln k}{4k^2-1}\right].$

Delete NH 204. Note the relation to 6.4434.

691	6.4692.	For $= 0$ read $= \frac{n}{1 - n^2}$;
		for $[n - \text{odd}]$ read $[n > 1 \text{ odd}]$.
693	6.5122.	Add $[n \ge 0]$.
703	6.541 2.	For $\Gamma(1 - \nu + k)$ read $\Gamma(1 + \nu + k)$ in second line. Replace the third line, which does not contain new information, by [2]: For $0 < a < b$, interchange a and b in the right-hand side.
704	6.541 3.	For $(x^2 + z^2)\rho$ read $(x^2 + z^2)^{\rho}$. The notation
		$\Gamma \begin{bmatrix} a_1, \dots, a_p \\ b_1, \dots, b_q \end{bmatrix} = \frac{\Gamma(a_1) \cdots \Gamma(a_p)}{\Gamma(b_1) \cdots \Gamma(b_q)}$
		used in this entry is apparently not defined.
707	6.56113.	For $a^{\mu+1}$ read $a^{\mu+1}\Gamma$.
717	6.5771.	For $1 + \operatorname{Re} \mu - 2n$ read $2 + \operatorname{Re} \mu - 2n$.
717	6.5772.	For $\operatorname{Re} \nu - 2n + 1$ read $\operatorname{Re} \nu - 2n + 2$.
718	6.578 5.	This integral is probably wrong. In any case it is divergent for certain values of μ .
722	6.584 5.	It is not clear what is meant by $\prod_{i=1}^{n}$.
		For $\sum \mu_j$ read $\sum_i \mu_j$ in the fourth line.
730	6.613	For x2 read x^2 .
742	6.6463.	For e^{-bx} read e^{-bs} .
743	6.6473.	For $-(a/2)$ read $-(\alpha/2)$.
778	6.75334.	The complicated form of the results for these two
		integrals, which are newly introduced without giv- ing a reference, differs considerably from the results given in [10, No. 2.12.25.3., 2.15.11.2] for more general integrals. Also, it is unclear why these in- tegrals have not been introduced as 6.7537. and 6.7538. The integrals 6.7533. and 6.7534. in the previous edition [6], which are now deleted, are not covered by 6.7535. and 6.7536., as it might ap- pear at first glance.
830	7.229	This formula is identical to 7.228. Delete.
847	7.391 9.	For $\Gamma(\alpha - \beta + m \text{ read } \Gamma(\sigma - \beta + m \text{ .}$
853	7.4222.	In [14], referring to the previous edition [6], this formula is said to be <i>incorrect</i> , <i>in particular for</i> $n = 0$, $\sigma = 0$, $\alpha = 1$. It does not necessarily be- come correct merely by excluding these values, as has been done. Also sign errors are now present in the superscript of the first L on the right-hand side. The problem lies, however, in the interchanged sub- scripts of the two L on the right-hand side. Numer- ical tests suggest that: For $L_n^{\sigma+m-n}$ read $L_m^{\sigma-m+n}$; for $L_m^{\nu-\sigma+m-n}$ read $L_n^{\nu-\sigma+m-n}$; retain from the restrictions only $[v > 0$, Re $\alpha > 0$, Re $\nu > -11$.
871	7.6291.	For \sqrt{as} read \sqrt{as} .
887	7.683	For $\frac{\mu-\alpha-1}{1}$ read $\frac{\mu-\alpha-1}{2}$ in the subscript of M .

454

- 9148.130 8.Delete "which is not a constant".9268.178 2.For $t^1\sigma$ read $t\sigma$.9268.18-19The notation used for the theta functions in this vol-
- ume is deplorably inconsistent, not only with respect to the letters ϑ and θ . See in particular formulas 8.199(1)-(3) and $\S6.16$.

928 8.186 In the equation, for ∂_{τ} read $\partial \tau$.

- 929 8.1891. For $\vartheta_4(i)$ read $\vartheta_4(u)$.
- 935 8.215 Replace this entry by [7, p. 33],

$$\operatorname{Ei}(z) = \frac{e^{z}}{z} \left[\sum_{k=0}^{n} \frac{k!}{z^{k}} + r_{n}(z) \right], \quad |r_{n}(z)| = O(|z|^{-n-1}),$$
$$[z \to \infty, |\operatorname{arg}(-z)| \le \pi - \delta; \ \delta > 0 \text{ small}].$$
$$|r_{n}(z)| \le (n+1)! |z|^{-n-1} \text{ [Re } z \le 0].$$

935 8.216 Presumably, for $O(n^0)$ read O(1);

- for *n* large read $n \to \infty$.
- 937 8.2341. Delete the comma in the upper limit of the integral.
- 939 8.2525. For $4x^2$ read $4x^2$.
- 8.254 Replace this entry by [7, p. 19],

$$\Phi(z) = 1 - \frac{e^{-z^2}}{\sqrt{\pi}z} \left[\sum_{k=0}^n (-1)^k \frac{(2k-1)!!}{(2z^2)^k} + O(|z|^{-2n-2}) \right],$$

$$[z \to \infty, |\arg(-z)| \le \pi - \delta; \delta > 0 \text{ small}].$$

942 8.3102. Delete "
$$\Gamma(z)$$
 satisfies the relation".

943 8.315 Add (For C see 8.3102.).; Delete "for z, not an integer".

944 line 2 Delete.

8.335

946

944 8.3152. According to [8, p. 81–82], replace this entry by

$$\int_{-}^{\infty} \frac{e^{bti}}{(a+it)^z} dt = \frac{2\pi e^{-ab}b^{z-1}}{\Gamma(z)}$$
$$\int_{-}^{'} \frac{e^{-bti}}{(a+it)^z} dt = 0$$

[Re a > 0, b = 0, Re z > 0, $|\arg(a + it)| < \frac{1}{2}\pi$]. For n^{mx} read i = 1.

948	8.341 2.	For ω read w in the upper limit of the integral.
949	8.344	For $\cos L^{2n-1}$ read \cos^{2n-1} .
949	8.3502.	For 0 read x in the lower limit of the integral.
950	8.3523.	Replace $\Gamma(0, x)$ by $-Ei(-x)$.
952	8.36	There exist a number of important formulas for $\psi(z)$ and $\psi^{(n)}(x)$ which are not given. See [3,
		§§6.3–4].
953	8.3638.	Add = $(-1)^{n+1} n! \zeta(n+1, x)$.
956	8.3721.	For $[-x \in \mathbb{N}]$ read $[-x \notin \mathbb{N}]$.
956	8.3722.	Add $[-x \notin \mathbb{N}]$.
956	8.3723.	Add $[-x \notin \mathbb{N}]$. Add after this formula:

		$\beta(x)$ has simple poles at $x = -n$ with residue $(-1)^n$
957	8.374	For $[-x \in \mathbb{N}]$ read $[-x \notin \mathbb{N}]$. Delete the line after this formula.
960	8.391	For $\frac{x^p}{n^2}F_1$ read $\frac{x^p}{n} F_1$.
961	8.405	Delete "for an arbitrary Bessel function $Z_{\nu}(z)$, that is " in the line after the formula
961	line 11	For Bessel functions of imaginary argument read Modified Bessel functions.
961	8.4111.	For $[n-a \text{ natural number}]$ read
		$[n = 0, 1, 2, \dots].$
963	8.4125.	Replace $\{\Gamma(\frac{1}{2} - \nu)\}^{-1} \neq 0$ by $\nu \neq \frac{1}{2}, \frac{3}{2}, \dots$
964	8.4126.	Add the drawing.
		$ \begin{array}{c c} -\pi + i\infty & y & \pi + i\infty \\ & & & & \\ & & & & \\ & & & & \\ & & & & $
969	8.4326.	For z^2 read z^2 .
969	8.4327.	For $-\frac{\pi}{2}$ read $-\frac{x}{2}$; for $ \arg z = \operatorname{read} \arg z = .$
970	8.4421.	Delete the two lines after the formula (except WA $174(1)$).
970	8.4422.	In the arguments of F, for $-\nu$, $-k$; $\mu - 1$; read $-\nu - k$; $\mu + 1$;.

For Kn read K_n .

ditto.

ditto.

Add [x > n] in third line.

For $\overline{H_{\nu}^{(2)}}(z)$ read $\overline{H_{\nu}^{(2)}(z)}$.

For $l_n(z)$ read $I_n(z)$.

For $l_1(z)$ read $I_1(z)$.

which are independent of z and ν .

Read $\sin \nu \pi$ in the denominator.

Presumably, for $\pi V a$ read $\pi \sqrt{a}$.

Add: Z denotes $J, N, H^{(1)}, H^{(2)}$ or any linear

combination of these functions, the coefficients in

Delete the restrictions, they are meaningless.

Presumably, for $\overline{Z}_2(2i\sqrt{z})$ read $\overline{Z}_2(2i\sqrt{z})$.

Presumably, for $\overline{Z}_{\frac{5}{6}}(\frac{5}{3}iz^{\frac{3}{5}})$ read $\overline{Z_{\frac{5}{6}}(\frac{5}{3}iz^{\frac{3}{5}})}$.

Presumably, for $\overline{Z}_{10}(2iz^{-\frac{1}{2}})$ read $\overline{Z}_{10}(2iz^{-\frac{1}{2}})$.

There is confusion on notation. In the previous edi-

tion [6, p. 999], the symbols $P^{\mu}_{\nu}(z)$, $Q^{\mu}_{\nu}(z)$ on line

456

971

976

979

979

980

981

982

982

982

983

986

987

987

1013

1014

line 5

8.471

8.472

8.485

8.4867.

8.4868.

8.4961.

8.4962.

8.496 3.

8.6714.

8.701

8.4861. - 3.

8.4864., 5.

8.47610.

8.4551.

1032	8.811	5 were said to denote single-valued and regular solu- tions of 8.7001. for $ z < 1$, whereas the symbols $P_{\nu}^{\mu}(z)$, $Q_{\nu}^{\mu}(z)$ on line 8 were said to be used for such solutions with Re $z > 1$. However, the formulas in 7.1–7.2 of [6] give the impression that the contrary is true. In this volume, the same symbols $P_{\nu}^{\nu}(z)$, $Q_{\nu}^{\mu}(z)$ are presented on both lines 4 and 6, thus making the lines 4 to 7 unintelligible. The (proba- bly) unnecessary distinction between P , Q and P, Q remains in other places, in particular in 7.1–7.2, but no detailed check has been made whether these notations are consistent within any definition. For equation read representation.
1045	8.9132.	For simple read closed.
1065	9.100	Add"also called Gaussian hypergeometric function."
1071	9.137	For functions read formulas.
1073	9.1534.	For $F(1 + m', -m \text{ read } F(1 + m' - m)$.
1075	line $l - 12$	For "the pair, unity" read one.
1080	9.18014.	Delete "Region of convergence" before the formula;
		place the restrictions (in []) on the line of the for- mula.
1083	9.1833.	For $(-y)^{\beta}$ read $(-y)^{-\beta}$ in second line [11, No. 7.2.4.39].
1088	9.227	For $\pi - \alpha < o$ read $\pi - \alpha < \pi$.
1095	9.2553.	For z^2 read z^2 .
1096	9.301	For b_1, \ldots, b_2 read b_1, \ldots, b_n .
1096	line $l-1$	Delete the comma after $p < q$.
1097	9.303-4	Delete *).
1099	9347	For $(a, b, c, -x)$ read $(a, b, c, -x)$
1100	9.5	Mixing the Riemann zeta function $\zeta(z)$ and the generalized zeta function $\zeta(z, q)$ in this section is unfortunate. In particular, it is unusual to extend the name of Riemann to $\zeta(z, q)$. This function has little in common with $\zeta(z)$ other than $\zeta(z) = \zeta(z, 1)$ and $(2^z - 1)\zeta(z) = \zeta(z, \frac{1}{2})$.
1102	9.5231.	Replace this formula by
		$\zeta(z) = \prod_{p} \frac{1}{1 - p^{-z}}$ [Re $z > 1$].
1102	9.5232.	Add [Re $z > 1$].
1102	9.5233	For Λ read Λ in the formula and in the line after
1102	7.545 5.	it; add [Re $z > 1$] in the formula, delete it in the line.
1103	9.537	The separate entries 9.537 and 9.561, 9.562 on p. 1105 are confusing. They should be combined to read
	9.5371.	$\xi(z) = \pi^{-\frac{1}{2}z}(z-1)\Gamma(\frac{1}{2}z+1)\zeta(z) = \xi(1-z).$
	9.5372.	$\Xi(t) = \zeta \left(\frac{1}{2} + it\right) = \Xi(-t).$

TABLE ERRATA			
		Delete the line after 9 537	
1103	9 541 1	For $l(z, a)$ read $l(z)$	
1103	9 5 4 1 2 3	For $0 \le \text{Re} \ z \le 1$ read $0 \le \text{Re} \ z \le 1$	
1103	9.541.2., 5.	It would be interesting to insert a remark that the	
1105	7.541 5.	first 1 500 000 001 zeros lying in	
		113t 1,500,000,001 2005 1911g 111	
		0 < 1112 < 545, 459, 625.215 are known [15] to	
1105	0.56	nave $\operatorname{Re}_2 = \overline{2}$. Delate the whole section (see n 1102 0 527 shows)	
1105	9.30	Delete the whole section (see p. 1105, 9.557 above). For P (1) $n=1$ mod P (1) $n=1$, for Π^{∞}	
1100	9.017	For $B_{2n}(-1)^n$ read $B_{2n} = (-1)^n$; for $\prod_{p=2}^{n}$	
1100	0.64	read \prod_p .	
1109	9.64	For $\nu(\mathbf{S}x)$ read $\nu(\mathbf{x})$.	
1110	9.71	This table of the Bernoulli numbers should be rear-	
		ranged properly.	
1111	line $l = 6$	Insert $-\sum_{k=1}^{\infty} \frac{(-1)^k}{k}$ before the numerical value	
1111	me t = 0	$\operatorname{Hsert} = \sum_{k=0}^{\infty} \frac{(2k+1)^2}{(2k+1)^2}$ before the numerical value.	
1112	0 742 1	Add $S^{(0)} = \delta$: $S^{(1)} = (-1)n - 1(n - 1)1$; $S^{(n)} = 1$	
1112	9.7421.	And $S_n = O_{0n}$, $S_n = (-1)$ $(n-1)$; $S_n = 1$.	
1112	9.7431.	Add $\mathfrak{S}_{n}' = \mathfrak{o}_{0n}; \ \mathfrak{S}_{n}' = \mathfrak{S}_{n}' = 1.$	
1113	9.744	In the headline of the table, for s read S; in the	
		column for $S_9^{(m)}$: for 118121 read 118124.	
1127	line $l-2$	For $2 \text{ Im } z$ read $2i \text{ Im } z$.	
1128	line 2	For 1 read 1.	
1136	13.123-5	For A^{\dagger} read A^{\dagger} (5 times).	
1138	13.214	For $x \neq 0$ read $\mathbf{x} \neq 0$ (twice); for $Q(x)$ read	
		$Q(\mathbf{x})$.	
1139	13.41	For e^{Az} read e^{Az} (twice).	
1140	13.4111.	For e^{1z} read e^{1z} .	
1141	14.12	For "when the following results" read "then the fol-	
		lowing statements".	
1177	17.121.	For $F(s) + G(s)$ read $aF(s) + bG(s)$.	
1178	17.123.	For $d\zeta$ read $d\xi$.	
1178	17.133.	For x^{ν} , $\nu > -1$ read x^{ν} , $\text{Re }\nu > -1$.	
1178	17.134.	For $(\frac{\sqrt{\pi}}{2})(\frac{3}{2})(\frac{5}{2})\cdots(\frac{n-1}{2})$ read $\Gamma(n+\frac{1}{2})$.	
1179	17.1239.	Here and in other cases, e.g., p. 1188, 17.33.18,	
		p. 1191, 17.34.13, only the simplest special case	
		is taken from the source. There, the result for	
		$x^n \sin ax$ is given.	
1181	17.1380.	For $bv \operatorname{Re} a$ read $ \operatorname{Re} a $.	
1182	17.13101.	Replace the right-hand side by	
		$s^{-1}(s + a^2)^{-\frac{1}{2}}[(s + a^2)^{-\frac{1}{2}} - a]$	
1182	17 13 103	Move the restriction on $\mathbf{R} = u$ to the left column	
1102	17.15 105.	(Also in other formulas on this page)	
1182	17 13 111	For $r^{-(\nu+1)}$ read $r^{\nu+1}$	
1184	17 22 2	For $ \mathbf{r} $ read \mathbf{r}	
118/	17.232.	101 $ \lambda $ 10au λ . Deploce $\delta(x = a) = a \mod bx \delta(ax + b) = a = b \in \mathbb{D}$	
1104	11.234.	Notice $u(x - u)$, u real by $u(ax + u) = u$, $v \in \mathbb{R}$,	
1184	17 726	$u \neq 0$, replace $e^{-i\theta}$ by $e^{-i\theta}$. The Equipier transform of 1 / led loads to a dimension	
1104	17.230.	The Fourier transform of $1/ x $ leads to a divergent integral. Delete	
		integral. Delete.	

1184	17.238.	For $\operatorname{Re} a$ read $a \in \mathbb{R}$.
1184	17.23 10.	Delete $\xi > 0$.
1185	17.23 15.	For $i(\pi/2)^{\frac{1}{2}}e^{-\xi a}$ read $i \operatorname{sgn} \xi(\pi/2)^{\frac{1}{2}}e^{-a \xi }$.
1185	17.2323.	For $(2/\pi^3)$ read $(2\pi^3)$.
1185	17.23 24.	For $x^{\nu} \operatorname{sgn} x$, $\nu < -1$ but not integral read
		$x^n \operatorname{sgn} x, \ n = 1, 2, \dots;$
		for $(-i\xi)^{-(1+\nu)}\nu!$ read $n!(-i\xi)^{-n-1}$. ([12, p. 506])
1185	17.23 25.	Replace the formula in the right-hand column by
		$(2/\pi)^{\frac{1}{2}}\Gamma(\nu+1) \xi ^{-\nu-1}\cos[\pi(\nu+1)/2].$ ([12, p. 506])
1185	17.23 26.	For (2π) read $(2/\pi)$.
1188	17.33	In all the headings of this table (pp. 1188-1190),
		insert $\xi > 0$ after $F_s(\xi)$; delete $\xi > 0$ elsewhere in
		the table.
1188	17.3311.	According to [9, No. 2.5.9.11]:
		For $(x^2 + a^2)^{\nu - \frac{3}{2}}$ read $(x^2 + a^2)^{-\nu - \frac{3}{2}}$; replace the
		right-hand side by
		$\frac{\zeta^{\nu+1}}{\zeta^{\nu+1}} K_{\nu}(a\xi)$
		$\sqrt{2}(2a)^{\nu}\Gamma(\nu+\frac{3}{2})^{1+\nu}(\omega\varsigma)^{\nu}$
1188	17.3313.	For $(2\pi)^{-\frac{1}{2}}$ read $\sqrt{\pi/8}$.
1189	17.33 33.	For $(2\pi)^{-\frac{1}{2}}$ read $(2\pi)^{\frac{1}{2}}$;
		for $\sinh(a\xi)$ read $\sinh(a\xi)/\xi$.
1190	17.33 40.	For $K_0(ab)$ read $K_0(ab)/b$.
1190	17.34	In all the headings of this table (pp. 1190–1193),
		insert $\xi > 0$ after $F_c(\xi)$; delete $\xi > 0$ elsewhere in
		the table.
1191	17.346.	For $0 < \nu < 1$ read $0 < \operatorname{Re}\nu < 1$.
1191	17.34 14.	For $\operatorname{Re}\nu > a$ read $\operatorname{Re}\nu > 0$.
1191	17.34 16.	For $ a ^{-1}$ read a^{-1} .
1192	17.3421.	For $\zeta > 2a$ read $\zeta < 2a$.
1192	17.3422.	For $\alpha > 0$, Re $\beta > 0$ read $a > 0$, Re $\beta > 0$.
1192	17.34 24.	For $(x^2 + a^2)^{\frac{1}{2}}$ read $(x^2 + a^2)^{-\frac{1}{2}}$.
1193	17.3433.	For $(e^{-b\zeta} - e^{-a\zeta})$ read $(e^{-b\zeta} - e^{-a\zeta})/\zeta$.
1195	1/.43811.	Presumably, $H(1-x)$ is the Heaviside step func-
1107	17 42 27	tion. Example 1 $(1 - 2^2 - 5) \Sigma(x) = 5 + 2 + 2 + 2$
119/	17.4327.	For $I(s)$ read $(1 - 2^{2/3})I(s)$; for $\text{Res} > 2$ read
1109	DII	RCS > 0. There exists an English edition: see [5] Also
1170	DU	n 1202 line $l = 7$ and n 1202 line 19
1202	line 2	p. 1202, find $i = i$ and p. 1203, find 18. For Lossh read Lössh
1202	line 2	For Neilsen read Nielsen
1202	mic J	

Acknowledgment. I am indebted to Dr. G. Dôme (CERN) for pointing out some errors in [6].

K. S. Kölbig

CERN CN Division CH-1211 Geneva 23 Switzerland

- 1. H. E. Fettis, Table Erratum 601, Math. Comp. 41 (1983), 780-782.
- 2. G. Solt, Table Erratum 607, Math. Comp. 47 (1986), 768.
- 3. M. Abramowitz and I. A. Stegun, eds., Handbook of mathematical functions with formulas, graphs, and mathematical tables, 9th printing with corrections, Dover, New York, 1972.
- 4. D. Bierens de Haan, Nouvelle tables d'intégrales définies, Hafner, New York, 1957.
- 5. H. Buchholz, The confluent hypergeometric function, Springer-Verlag, Berlin, 1969.
- 6. I. S. Gradshteyn and I. M. Ryzhik, *Table of integrals, series, and products*, Corrected and enlarged edition (A. Jeffrey, ed.), Academic Press, New York, 1980.
- 7. N. N. Lebedev, Special functions and their application, Prentice-Hall, Englewood Cliffs, NJ, 1965.
- 8. F. Lösch and F. Schoblik, Die Fakultät (Gammafunktion) und verwandte Funktionen, Teubner, Leipzig, 1951.
- 9. A. P. Prudnikov, Yu. A. Brychkov, and O. I. Marichev, Integrals and series, Vol. 1, Elementary functions, Gordon and Breach, New York, 1986.
- 10. _____, Integrals and series, Vol. 2, Special functions, Gordon and Breach, New York, 1986.
- 11. ____, Integrals and series, Vol. 3, More special functions, Gordon and Breach, New York, 1990.
- 12. I. N. Sneddon, The use of integral transforms, McGraw-Hill, New York, 1972.
- 13. J. van de Lune, H. J. J. te Riele, and D. T. Winter, On the zeros of the Riemann zeta function in the critical strip. IV, Math. Comp. 46 (1986), 667-681.
- H. van Haeringen and L. P. Kok, Corrigenda, Extended version of Table Erratum 589, Math. Comp. 39 (1982), 747-757.